AI and Digital Chemistry

Basic Information

Course ID
01ace297-b4ac-432b-9b7a-eb6ecbdb36ce
Option ID
3723991a-4fd0-43b8-9d31-d86c2e8f1aee
Provider
University of Nottingham
Type
postgraduate
Academic Year
2026
Source
ucas
Created
2/21/2026, 1:01:07 PM
Updated
2/21/2026, 1:01:07 PM

Other Options for this Course

Option ID Added
2a8a6345-6ea9-44af-890f-d81ea7b9b442 2/21/2026 View

Listing Data (Raw)

{
  "id": "3723991a-4fd0-43b8-9d31-d86c2e8f1aee",
  "duration": {
    "quantity": 2,
    "durationType": {
      "id": "4",
      "caption": "Years",
      "mappedCaption": null
    }
  },
  "features": {
    "accelerated": false
  },
  "location": {
    "id": "43bd1265-cad9-e0a6-2c99-0b0a82652dca",
    "url": null,
    "name": "University Park Campus",
    "ukprn": null,
    "address": {
      "line1": "University of Nottingham",
      "line2": "",
      "line3": "",
      "line4": "Nottingham",
      "region": {
        "id": "10",
        "caption": "East Midlands",
        "mappedCaption": "East Midlands"
      },
      "country": {
        "id": "101",
        "caption": "England",
        "mappedCaption": "England"
      },
      "latitude": 52.9387934284,
      "postcode": "NG7 2RJ",
      "longitude": -1.2033705094
    },
    "isDefault": false,
    "geoLocation": {
      "latitude": 52.9387934284,
      "longitude": -1.2033705094
    },
    "tefCodeType": null,
    "locationCode": null,
    "googleMapsUrl": null,
    "googleMapsParams": null,
    "locationCategory": null,
    "geoLocationString": "52.9387934284,-1.2033705094"
  },
  "startDate": {
    "date": "09/2026",
    "nonSpecific": false
  },
  "studyMode": {
    "id": "9",
    "caption": "Part-time",
    "mappedCaption": "Part-time",
    "excludedSchemesForApplication": [
      "ucas"
    ]
  },
  "durationRange": null,
  "outcomeQualification": {
    "caption": "MSc"
  },
  "academicEntryRequirements": null
}

Detail API Response (Raw)

{
  "course": {
    "id": "01ace297-b4ac-432b-9b7a-eb6ecbdb36ce",
    "cpdFlag": false,
    "options": [
      {
        "id": "2a8a6345-6ea9-44af-890f-d81ea7b9b442",
        "status": {
          "published": true,
          "availableForApplication": true,
          "applicationStatusSummary": "Please speak to the provider to make an application",
          "acceptingApplicationsMessage": null,
          "notAcceptingApplicationsMessage": null
        },
        "cycleId": null,
        "modules": "Core modules\n\nMachine Learning in Science – Part 1\n\nThis module will provide an introduction to the main concepts and methods of machine learning. It introduces the basics of supervised, unsupervised and reinforcement learning as applied to regression, classification, density estimation, data generation, clustering and optimal control. It will be taught via two sessions per week through a combination of fundamental concepts and hands-on applications.\n\nMachine Learning in Science – Part 2\n\nThis module will cover more advanced topics following from Machine Learning in Science Part 1, specifically the concepts and methods of modern deep learning. Topics include deep neural networks, CNNs, RNNs, GANs, LLMs, autoencoders, transfer learning, reinforcement learning, interpretable machine learning and Markov decision processes, cleaning data and handling large data sets The main project for the module is the self-driving PiCar",
        "deadline": null,
        "duration": {
          "quantity": 1,
          "durationType": {
            "id": "4",
            "caption": "Years",
            "mappedCaption": null
          }
        },
        "features": {
          "accelerated": false
        },
        "location": {
          "id": "43bd1265-cad9-e0a6-2c99-0b0a82652dca",
          "url": null,
          "name": "University Park Campus",
          "ukprn": null,
          "address": {
            "line1": "University of Nottingham",
            "line2": "",
            "line3": "",
            "line4": "Nottingham",
            "region": {
              "id": "10",
              "caption": "East Midlands",
              "mappedCaption": "East Midlands"
            },
            "country": {
              "id": "101",
              "caption": "England",
              "mappedCaption": "England"
            },
            "latitude": 52.9387934284,
            "postcode": "NG7 2RJ",
            "longitude": -1.2033705094
          },
          "isDefault": false,
          "geoLocation": {
            "latitude": 52.9387934284,
            "longitude": -1.2033705094
          },
          "tefCodeType": null,
          "locationCode": null,
          "googleMapsUrl": "https://maps.googleapis.com/maps/api/staticmap?zoom=10&size=2048x600&scale=2&markers=size:tiny%7Ccolor:red%7C52.9387934284,-1.2033705094&key=AIzaSyDAC7vZWEFNPF6GFUZvXfO5PRDxdEC0Gc0&signature=Xd3i8FfKIi_TxxTyXYBVnh0dDcw=",
          "googleMapsParams": "52.9387934284,-1.2033705094",
          "locationCategory": null,
          "geoLocationString": "52.9387934284,-1.2033705094"
        },
        "startDate": {
          "date": "09/2026",
          "nonSpecific": false
        },
        "studyMode": {
          "id": "3",
          "caption": "Full-time",
          "mappedCaption": "Full-time",
          "excludedSchemesForApplication": []
        },
        "applyCycle": "2026",
        "courseFees": [],
        "courseType": null,
        "entryPoints": [],
        "durationRange": {
          "max": null,
          "min": null
        },
        "admissionTests": [],
        "subjectOptions": [],
        "useDefaultFees": false,
        "providerApplyUrl": "https://www.nottingham.ac.uk/pgstudy/course/taught/2026/ai-and-digital-chemistry-msc",
        "assessmentMethods": "Modules are assessed with a mix of different methods, such as coursework, exams, written and oral reports and research projects. \n\nAssessment is varied and designed to reflect real-world skills.\n\n​​You will be awarded a Master of Science if you successfully achieve a weighted average mark of at least 50% with no more than 40 credits below 50%, and no more than 20 credits below 40%. You must also achieve a mark of at least 50% in the research project.",
        "entryRequirements": "​​​2:1 BSc Hons in chemistry or a related subject (e.g. chemical engineering or natural sciences); or a combination of qualifications and/or experience equivalent to that level. A high 2:2 (above 56%) may be considered if you have relevant work experience or another supporting factor.",
        "internalReference": null,
        "providerCourseUrl": "https://www.nottingham.ac.uk/pgstudy/course/taught/2026/ai-and-digital-chemistry-msc",
        "professionalBodies": [],
        "qualificationLevel": {
          "id": "RQF_7",
          "caption": "RQF Level 7",
          "mappedCaption": null
        },
        "subjectToValidation": false,
        "outcomeQualification": {
          "id": "158",
          "caption": "MSc",
          "mappedCaption": "Masters degrees"
        },
        "deferredEntryDisallowed": false,
        "additionalFeeInformation": "Our postgraduate taught application fee for 2026 entry is now £0.00 (free).\nhttps://www.nottingham.ac.uk/pgstudy/how-to-apply/taught.aspx",
        "academicEntryRequirements": null,
        "additionalEntryRequirements": [],
        "englishLanguageEntryRequirements": [],
        "minimumAcademicEntryRequirements": null,
        "subsequentYearsEntryRequirements": null,
        "amsApplicationConfigurationOptions": {
          "useAscii": false,
          "hasNoVacancies": "False",
          "customQuestions": [],
          "vacancyStatuses": [
            {
              "status": null,
              "domicile": "eu",
              "hasVacancies": true,
              "flattenedVacancy": "eu"
            },
            {
              "status": null,
              "domicile": "wales",
              "hasVacancies": true,
              "flattenedVacancy": "wales"
            },
            {
              "status": null,
              "domicile": "eng",
              "hasVacancies": true,
              "flattenedVacancy": "eng"
            },
            {
              "status": null,
              "domicile": "int",
              "hasVacancies": true,
              "flattenedVacancy": "int"
            },
            {
              "status": null,
              "domicile": "scot",
              "hasVacancies": true,
              "flattenedVacancy": "scot"
            },
            {
              "status": null,
              "domicile": "ni",
              "hasVacancies": true,
              "flattenedVacancy": "ni"
            },
            {
              "status": null,
              "domicile": "roi",
              "hasVacancies": true,
              "flattenedVacancy": "roi"
            }
          ],
          "hasRestrictedVacancies": "False",
          "hasRestrictedEligibility": false,
          "restrictedEligibilityUrl": null,
          "restrictedEligibilityInfo": null,
          "useEnhancedCriminalConvictionCheck": false,
          "notAcceptingInternationalApplications": "False"
        },
        "englishLanguageEntryRequirementInformation": null
      },
      {
        "id": "3723991a-4fd0-43b8-9d31-d86c2e8f1aee",
        "status": {
          "published": true,
          "availableForApplication": true,
          "applicationStatusSummary": "Please speak to the provider to make an application",
          "acceptingApplicationsMessage": null,
          "notAcceptingApplicationsMessage": null
        },
        "cycleId": null,
        "modules": "Core modules\n\nMachine Learning in Science – Part 1\n\nThis module will provide an introduction to the main concepts and methods of machine learning. It introduces the basics of supervised, unsupervised and reinforcement learning as applied to regression, classification, density estimation, data generation, clustering and optimal control. It will be taught via two sessions per week through a combination of fundamental concepts and hands-on applications.\n\nMachine Learning in Science – Part 2\n\nThis module will cover more advanced topics following from Machine Learning in Science Part 1, specifically the concepts and methods of modern deep learning. Topics include deep neural networks, CNNs, RNNs, GANs, LLMs, autoencoders, transfer learning, reinforcement learning, interpretable machine learning and Markov decision processes, cleaning data and handling large data sets The main project for the module is the self-driving PiCar",
        "deadline": null,
        "duration": {
          "quantity": 2,
          "durationType": {
            "id": "4",
            "caption": "Years",
            "mappedCaption": null
          }
        },
        "features": {
          "accelerated": false
        },
        "location": {
          "id": "43bd1265-cad9-e0a6-2c99-0b0a82652dca",
          "url": null,
          "name": "University Park Campus",
          "ukprn": null,
          "address": {
            "line1": "University of Nottingham",
            "line2": "",
            "line3": "",
            "line4": "Nottingham",
            "region": {
              "id": "10",
              "caption": "East Midlands",
              "mappedCaption": "East Midlands"
            },
            "country": {
              "id": "101",
              "caption": "England",
              "mappedCaption": "England"
            },
            "latitude": 52.9387934284,
            "postcode": "NG7 2RJ",
            "longitude": -1.2033705094
          },
          "isDefault": false,
          "geoLocation": {
            "latitude": 52.9387934284,
            "longitude": -1.2033705094
          },
          "tefCodeType": null,
          "locationCode": null,
          "googleMapsUrl": "https://maps.googleapis.com/maps/api/staticmap?zoom=10&size=2048x600&scale=2&markers=size:tiny%7Ccolor:red%7C52.9387934284,-1.2033705094&key=AIzaSyDAC7vZWEFNPF6GFUZvXfO5PRDxdEC0Gc0&signature=Xd3i8FfKIi_TxxTyXYBVnh0dDcw=",
          "googleMapsParams": "52.9387934284,-1.2033705094",
          "locationCategory": null,
          "geoLocationString": "52.9387934284,-1.2033705094"
        },
        "startDate": {
          "date": "09/2026",
          "nonSpecific": false
        },
        "studyMode": {
          "id": "9",
          "caption": "Part-time",
          "mappedCaption": "Part-time",
          "excludedSchemesForApplication": [
            "ucas"
          ]
        },
        "applyCycle": "2026",
        "courseFees": [],
        "courseType": null,
        "entryPoints": [],
        "durationRange": {
          "max": null,
          "min": null
        },
        "admissionTests": [],
        "subjectOptions": [],
        "useDefaultFees": false,
        "providerApplyUrl": "https://www.nottingham.ac.uk/pgstudy/course/taught/2026/ai-and-digital-chemistry-msc",
        "assessmentMethods": "Modules are assessed with a mix of different methods, such as coursework, exams, written and oral reports and research projects. \n\nAssessment is varied and designed to reflect real-world skills.\n\n​​You will be awarded a Master of Science if you successfully achieve a weighted average mark of at least 50% with no more than 40 credits below 50%, and no more than 20 credits below 40%. You must also achieve a mark of at least 50% in the research project.",
        "entryRequirements": "​​​2:1 BSc Hons in chemistry or a related subject (e.g. chemical engineering or natural sciences); or a combination of qualifications and/or experience equivalent to that level. A high 2:2 (above 56%) may be considered if you have relevant work experience or another supporting factor.",
        "internalReference": null,
        "providerCourseUrl": "https://www.nottingham.ac.uk/pgstudy/course/taught/2026/ai-and-digital-chemistry-msc",
        "professionalBodies": [],
        "qualificationLevel": {
          "id": "RQF_7",
          "caption": "RQF Level 7",
          "mappedCaption": null
        },
        "subjectToValidation": false,
        "outcomeQualification": {
          "id": "158",
          "caption": "MSc",
          "mappedCaption": "Masters degrees"
        },
        "deferredEntryDisallowed": false,
        "additionalFeeInformation": "Our postgraduate taught application fee for 2026 entry is now £0.00 (free).\nhttps://www.nottingham.ac.uk/pgstudy/how-to-apply/taught.aspx",
        "academicEntryRequirements": null,
        "additionalEntryRequirements": [],
        "englishLanguageEntryRequirements": [],
        "minimumAcademicEntryRequirements": null,
        "subsequentYearsEntryRequirements": null,
        "amsApplicationConfigurationOptions": {
          "useAscii": false,
          "hasNoVacancies": "False",
          "customQuestions": [],
          "vacancyStatuses": [
            {
              "status": null,
              "domicile": "eu",
              "hasVacancies": true,
              "flattenedVacancy": "eu"
            },
            {
              "status": null,
              "domicile": "wales",
              "hasVacancies": true,
              "flattenedVacancy": "wales"
            },
            {
              "status": null,
              "domicile": "eng",
              "hasVacancies": true,
              "flattenedVacancy": "eng"
            },
            {
              "status": null,
              "domicile": "int",
              "hasVacancies": true,
              "flattenedVacancy": "int"
            },
            {
              "status": null,
              "domicile": "scot",
              "hasVacancies": true,
              "flattenedVacancy": "scot"
            },
            {
              "status": null,
              "domicile": "ni",
              "hasVacancies": true,
              "flattenedVacancy": "ni"
            },
            {
              "status": null,
              "domicile": "roi",
              "hasVacancies": true,
              "flattenedVacancy": "roi"
            }
          ],
          "hasRestrictedVacancies": "False",
          "hasRestrictedEligibility": false,
          "restrictedEligibilityUrl": null,
          "restrictedEligibilityInfo": null,
          "useEnhancedCriminalConvictionCheck": false,
          "notAcceptingInternationalApplications": "False"
        },
        "englishLanguageEntryRequirementInformation": null
      }
    ],
    "suggest": "AI and Digital Chemistry. University of Nottingham. Artificial intelligence",
    "summary": "​​What if you could help transform how we discover life-saving medicines, advanced materials and sustainable chemicals by combining chemistry with the power of artificial intelligence (AI)?\n\n​Our master’s in AI and Digital Chemistry is your gateway to this revolutionary frontier. Designed for future scientists ready to lead in an era of digital innovation, this programme empowers you with skills in AI, data science and computational chemistry – tools now essential to solving the world’s most complex chemical challenges.\n\n​You’ll be based in the prestigious School of Chemistry, one of the UK’s largest and most research-active chemistry departments. Home to a vibrant community of over 160 postgraduate students and 60 postdoctoral researchers, the school offers an intellectually rich environment where groundbreaking ideas thrive. You'll also benefit from the university’s interdisciplinary strength, with collaborations across Mathematics, Computer Science, Engineering, Physical Sciences and industry leaders.\n\n​A diverse range of MSc research projects are available, with opportunities to work with industry co-supervisors and access to the university’s high-performance computer, powered by some of the latest CPU and GPU technologies. Whether your interests lie in molecular discovery, process automation or AI-driven material design, you’ll apply AI and computational techniques to solve a chemical problem, gaining practical, industry-relevant experience.\n\n​Graduating from this programme means stepping into a world of opportunity. Career paths include roles in pharmaceuticals, materials discovery, green chemistry and technology companies, where your unique blend of chemical insight and AI fluency will set you apart.\n\n​This course is ideal for: \n\n\n- ​Aspiring innovators: Individuals eager to apply AI techniques to solve complex chemical problems\n\n\n- ​Future scientists: Those seeking a career in scientific research with a focus on data science and AI\n\n\n- ​Problem solvers: Students who enjoy tackling challenging questions and developing new solutions\n\n\n- ​Tech enthusiasts: Individuals interested in the latest advancements in AI, machine learning and high-performance computing\n\n\n- ​Industry professionals: Those looking to enhance their skills and knowledge for roles in pharmaceuticals, materials discovery and tech companies\n\n\n​Be part of the next generation of scientific innovators. Your journey into the future of chemistry starts here.",
    "atasFlag": false,
    "contacts": [
      {
        "id": "fb583883-b99d-4326-b53b-d04aef3ebf8d",
        "fax": null,
        "email": "",
        "phone": "0330 041 5590",
        "title": "Clearing - Apply Online",
        "isDefault": false,
        "hasCourses": false,
        "isClearing": true,
        "clearingUrl": "https://www.nottingham.ac.uk/clearing",
        "enquiryLink": {
          "url": "https://www.nottingham.ac.uk/studywithus/enquiry.aspx",
          "caption": "Applicant Enquiry Form"
        },
        "availability": "View course vacancies and apply online at www.nottingham.ac.uk/clearing. For Clearing entry requirements, please search the vacancy listings on our website from Friday 5 July 2024. Clearing entry requirements for your course may differ from the standard entry requirements. \n\nVisit www.nottingham.ac.uk/clearing for more information.",
        "coursesCount": 0,
        "isAdmissions": false,
        "socialMediaPresences": []
      }
    ],
    "keywords": null,
    "provider": {
      "id": "79f42328-0271-1ace-1aec-05359cc16dd9",
      "name": "University of Nottingham",
      "ukprn": 10007154,
      "address": {
        "line1": "University Park",
        "line2": "",
        "line3": "",
        "line4": "Nottingham",
        "region": {
          "id": "10",
          "caption": "East Midlands",
          "mappedCaption": "East Midlands"
        },
        "country": {
          "id": "101",
          "caption": "England",
          "mappedCaption": "England"
        },
        "latitude": 52.9381844784,
        "postcode": "NG7 2RD",
        "longitude": -1.1943795678
      },
      "aliases": [],
      "logoUrl": "https://d1l6hqpjksdq9d.cloudfront.net/Prod/79f42328-0271-1ace-1aec-05359cc16dd9",
      "aliasName": "University of Nottingham",
      "websiteUrl": "www.nottingham.ac.uk",
      "liveProvider": true,
      "providerCode": null,
      "providerSort": "Nottingham, University of",
      "providerUrls": [],
      "imageLocation": "silver silver gold-01.png",
      "institutionCode": "N84",
      "providerShortName": "The University of Nottingham",
      "cukasInstitutionCode": null,
      "requireAsciiDocuments": false,
      "providerAbbreviatedName": "NOTTM",
      "aliasNameWithoutApostrophe": "University of Nottingham"
    },
    "subjects": [
      {
        "id": "1038",
        "caption": "Artificial intelligence",
        "mappedCaption": null
      }
    ],
    "auditions": [],
    "studyType": {
      "id": "1",
      "caption": "Taught",
      "mappedCaption": null
    },
    "department": {
      "id": "fdafb46c-9784-4138-bdbc-7d04f8aacb1b",
      "name": "Science, Chemistry, Physics and Astronomy"
    },
    "hecosCodes": [],
    "jacs3Codes": [],
    "publishEnd": "9999-12-31T23:59:59.9999999",
    "shortTitle": null,
    "specialism": {
      "primary": [],
      "secondary": [],
      "specialismStudyTypes": []
    },
    "visibleEnd": "2027-08-01T08:00:00",
    "compositeId": "01ace297-b4ac-432b-9b7a-eb6ecbdb36ce-2026",
    "courseTitle": "AI and Digital Chemistry",
    "facultyCode": null,
    "routingData": {
      "scheme": {
        "id": "none",
        "caption": "Direct application only",
        "mappedCaption": null
      },
      "destination": {
        "id": "pg",
        "caption": "Postgraduate",
        "mappedCaption": null
      }
    },
    "availableEnd": "9999-12-31T23:59:59.9999999",
    "englishTitle": "",
    "publishStart": "0001-01-01T00:00:00",
    "visibleStart": "2025-04-29T08:00:00",
    "taughtInWelsh": false,
    "ucasApplyData": null,
    "academicYearId": "2026",
    "availableStart": "0001-01-01T00:00:00",
    "awardingBodies": [],
    "applicationCode": null,
    "courseTitleSort": "AI and Digital Chemistry",
    "abbreviatedTitle": null,
    "balanceIndicator": null,
    "copyFormRequired": false,
    "internalReference": null,
    "currentlyInClearing": false,
    "ucasTeacherTraining": false,
    "degreeApprenticeship": false,
    "qualifiedTeacherStatus": null,
    "sponsorshipInformation": null,
    "internationalInformation": null,
    "courseTitleWithoutApostrophe": "AI and Digital Chemistry",
    "additionalAuditionInformation": null,
    "higherTechnicalQualifications": false
  },
  "version": 8,
  "academicYearsInformation": {
    "2026": 2
  }
}
← Back to Courses